用于極紫外實(shí)驗(yàn)的多層膜鍍膜技術(shù)
EUV多層膜是為像高次諧波應(yīng)用這樣的實(shí)驗(yàn)設(shè)計(jì)和制作的。在本文中,我們將展示適用于8nm -50nm波段的 Ru/B4C 、 Mo/Si、 Zr/Al Si和 SiC/Mg 多層膜的最新成果。這些多層膜都容易根據(jù)實(shí)驗(yàn)的具體要求定制參數(shù),包括入射角、峰值波長(zhǎng)和帶寬。
01
引言
02
8-12nm波段適用的多層膜

圖1. Pd/B4C(藍(lán)線)、Ru/B4C(紅線)和Mo/B4C(綠線)多層膜的反射率;(a) 8 nm、(b) 10 nm和(c) 12 nm。

圖2. 設(shè)計(jì)用于在入射角為45°,峰值波長(zhǎng)為8.8 nm時(shí)的Ru/B4C多層膜(藍(lán)點(diǎn))的反射率譜圖,紅線為假設(shè)層間粗糙度為0.4 nm時(shí)的的模擬反射率。
03
波長(zhǎng)13.5nm適用的多層膜
圖3. Mo/Si多層膜反射率實(shí)測(cè)圖

入射角為6°

入射角為45°
圖4. MoSi2/Si窄帶多層膜和Ru/Si寬帶多層膜的反射率(假設(shè)層間粗糙度為0.7 nm)


04
17nm-25nm波段適用的多層膜

圖5. Zr/Al-Si(藍(lán)線)、C/Al-Si(紅線)和Y/Al-Si(綠線)的模擬反射率

圖6. (a) (d)高反射率、(b) (e)窄帶反射率和(c) (f)寬帶反射率Zr/Al-Si(藍(lán)線)和Mo/Si(紅虛線)多層膜的計(jì)算反射曲線。(a)、(b)和(c)AOI=0℃,(d)、(e)和(f)AOI=45℃。
注:圖5和圖6中的計(jì)算是假設(shè)在像表面無(wú)氧化、層間光滑等理想情況下的得到的。
窄帶Zr/Al-Si多層膜在入射角為45度時(shí)的反射率測(cè)量結(jié)果如圖7所示,峰值波長(zhǎng)為(a) 18 nm和(b) 21 nm。表面氧化和層間粗糙度大約為4nm和0.5 nm。該窄帶鏡在18 nm處的反射率峰值為45%,帶寬(半峰全寬FWHM)為0.7 nm,在21 nm處的反射率峰值為34%,帶寬(半高全寬FWHM)為0.8 nm。
圖7. Zr/Al-Si多層膜在入射角為45°時(shí)的反射率

18nm優(yōu)化

21nm優(yōu)化
05
25nm-50nm波段適用的多層膜

圖8. SiC/Mg窄帶多層膜反射率的實(shí)測(cè)結(jié)果;入射角為6度。
圖9. Mo/Si寬帶多層膜的反射率(藍(lán)線)和反射相位(紅虛線),6度入射

兩塊多層膜

指定覆蓋層
06
結(jié)論
07
應(yīng)用實(shí)例
定制 EUV/X-ray 光學(xué)元件:
左右滑動(dòng)查看更多
如有任何需要咨詢的內(nèi)容,請(qǐng)聯(lián)系我們。
參考文章:
[1] E. Spiller, “Reflective multilayer coatings for the far uv region,” Appl. Opt. 15, 2333
(1976).
[2] T. W. Barbee, et al., “Molybdenum-silicon multilayer mirrors for the extreme
ultraviolet,” Appl. Opt. 24, 883 (1985).
[3] J. H. Underwood, et al., “Tarnishing of Mo/Si multilayer x-ray mirrors,” Appl. Opt. 32,
6985 (1993).
[4] M. Singh and J. J. M. Braat, “Capping layers for extreme-ultraviolet multilayer
interference coatings,” Opt. Lett. 26, 259 (2001).
[5] H. Takenaka and T. Kawamura, “Thermal stability of Mo/C/Si/C multilayer soft X-ray
mirrors,” J. Electron Spectrosc. Relat. Phenom. 80, 381 (1996).
[6] H. Takenaka, et al., “Soft-x-ray reflectivity and heat resistance of SiC/Mg multilayer,” J.
Electron Spectrosc. Relat. Phenom. 144-147, 1047 (2005).
[7] M. Grisham, et al., “Damage to extreme-ultraviolet Sc/Si multilayer mirrors exposed to
intense 46.9-nm laser pulses,” Opt. Lett. 29, 620 (2004).
[8] K. M. Skulina, et al., “Molybdenum/beryllium multilayer mirrors for normal incidence
in the extreme ultraviolet,” Appl. Opt. 34, 3727 (1995).
[9] B. Sae-Lao and C. Montcalm, “Molybdenum–strontium multilayer mirrors for the
8–12-nm extreme-ultraviolet wavelength region,” Opt. Lett. 26, 468 (2001).
[10] C. Montcalm, et al., “In situ reflectance measurements of soft-x-ray/extreme -ultraviolet
Mo/Y multilayer mirrors,” Opt. Lett. 20, 1450 (1995).
[11] D. L. Windt and E. M. Gullikson, “Pd/B4C/Y multilayer coatings for extreme
ultraviolet applications near 10 nm wavelength,” Appl. Opt. 54, 5850 (2015).
[12] J. H. Underwood, et al., “Calibration and standards beamline 6.3.2 at the Advanced
Light Source,” Rev. Sci. Instrum. 67, 3372 (1996).
[13] D. L. Windt, and J. A. Bellotti, “Performance, structure, and stability of SiC/Al
multilayer films for extreme ultraviolet applications,” Appl. Opt. 48, 4932 (2009).
[14] E. Meltchakov, et al., “Development of Al-based multilayer optics for EUV,” Appl.
Phys. A 98, 111 (2010).
[15] Q. Zhong, et al., “Enhancement of the reflectivity of Al/Zr multilayers by a novel
structure,” Opt. Express, 21, 14399 (2013)
[16] M. Hatayama, et al., “Wide-range narrowband multilayer mirror for selecting a
single-order harmonic in the photon energy range of 40–70 eV,” Opt. Express 24,
14546 (2016).
[17] H. Ye, et al., “An overview of the development of Al-Si-Alloy based material for
engine applications,” Eng. Perf. 12, 288 (2003).
[18] M. Hatayama, et al., “Broadband extreme ultraviolet multilayer mirror for
supercontinuum light at a photon energy of 35-65 eV,” Appl. Opt. 48, 5464 (2009).
[19] H. Mashiko, et al., “Extreme ultraviolet supercontinua supporting pulse durations of
less than one atomic unit of time,” Opt. Lett. 34, 3337 (2009).